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Abstract. The quantum mechanical analogue of the classical integrable system, originally 
founded by Goryachev and Chaplygin in 1900, is considered in detail. The problem is 
formulated in terms of the Euclid E(3)  group. The Euler-Poisson equations of motions 
and their integrals are derived. The determination of the spectra of the integrals of motion 
is equivalent to construction of the special basis of representation of E(3) .  The eigenvalue 
problem admits separation in new variables, which are closely connected with two boson 
creation-annihilation operators. They are the same as in the Majorana representation of 
the Lorentz group. In the new variables the quantum mechanical equations of motion 
look similar to the classical ones. The constants of motion are determined by the spectral 
problems for the two Jacobi-type tridiagonal infinite matrices. Some numerical results 
are given. 

1. Introduction 

Since the invention of the inverse scattering method, there has been renewed interest 
in integrable systems in classical and quantum mechanics. In quantum mechanics it 
is useful to analyse problems which are solvable in classical mechanics. Separation 
of the variables in classical mechanics should correspond in quantum mechanics to 
reduction of the eigenvalue problems for integrals of motion to independent one- 
dimensional spectral problems. Such a reduction is carried out either by choosing 
suitable coordinates, if the Hamiltonian is a linear partial differential operator, or by 
a linear canonical transformation, if the Hamiltonian is of quadratic form in coordinates 
and momenta. When the Hamiltonian of a system with N degrees of freedom is a 
more complicated function of coordinates and momenta and admits N integrals of 
motion in involution, the problem of explicit separation of variables arises. In classical 
mechanics the problem is solved by the Liouville theorem (Arnol’d 1976). The solution 
of the corresponding quantum problem is so far unknown. Thus, it is useful to 
investigate special examples. The well known classical problem of motion of a heavy 
rigid body about a fixed point can be a good source of suitable examples (Gorr er a1 
1978, Leimanis 1965). Considerable effort was made to find the relations between 
the parameters involved, assuring existence of the fourth algebraic integral of motion 
and hence complete integrability of the problem. The celebrated Husson-PoincarC 
theorem states that at arbitrary initial conditions the problem is integrable in quad- 
ratures only in three remarkable cases of Euler, Lagrange and Kovalevskaya. When 
the initial conditions are chosen in a particular way, new integrable systems appear, 
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among which a very interesting case was found by Goryachev and Chaplygin in 1900 
(Chaplygin 1948). The Kovalevskaya and Goryachev-Chaplygin (GC) tops in quantum 
mechanics were discussed by the author (Komarov 1981, 1982). In this paper the 
solution of the GC top is considered in detail. 

The paper is organised as follows. In 9 2 the GC problem is formulated in terms 
of the Euclid group E(3) both in classical and in quantum mechanics. The classical 
equations of motion are reduced to quadratures. In § 3 the generators of E(3) are 
represented as functions of two boson creation-annihilation operators. These 
operators provide the most natural representation of the GC top. Thus, the eigenvalue 
problem for integrals of motion is reduced to two connected spectral problems for 
the infinite Jacobi-type matrices and equations of motion are drastically simplified. 
In § 4 some numerical results are given. 

2. The GC top in the terms of E(3) 

To fix the position of a rigid body in space one needs three independent parameters. 
For example, they may be three Euler angles. Often one uses three components of 
the unit Poisson vector n = ( x l ,  x 2 ,  x 3 )  to fix an axis (two parameters) and the angle 
of rotation about the axis. This parametrisation is very convenient if the external 
field has axial symmetry and the top rotates freely about the direction of the field. 

The Hamiltonian of the GC top in the body-frame can be written as (after appropri- 
ate scaling) 

H = i(Jf -kJ:  +4J:) - b X l  =i(J’+ 3J: ) - bXl (1) 

where J = (J1, J2, J 3 )  is the angular momentum and n = ( x l ,  x 2 ,  x 3 )  is a unit Poisson 
vector directed along the uniform field. The principal momenta are in the ratio 1 : 1 : h, 
thus the top looks like a cucumber. The potential energy -bx l  is a scalar product of 
the body dipole moment d = (d, 0,O) directed along its first axis, i.e. across its symmetry 
axis, and the constant uniform field F = - 9 ( x 1 ,  x2,  xg). The parameter b is a product 
of the moduli of the dipole moment and the field strength. If the field F is 
gravitational, the dipole moment appears due to non-coincidence of the centre of 
mass of the top and the fixed point. If the field F is electric, the top rotates about 
the centre of mass and d is the electric dipole moment of the body. In the last case 
the Hamiltonian (1) describes the behaviour of a molecule with the momenta inertia 
ratio 1 : 1 : in uniform electric field, if the molecular dipole moment is directed across 
its symmetry axis. Hamiltonian (1) may also be useful in the theory of magnetism. 

In the body-frame the components of the angular momentum Ji and the Poisson 
vector x i  satisfy the left commutation relations of the Euclid algebra e(3) 

where the symbol [ ] denotes commutator (in quantum mechanics) or the Poisson 
bracket multiplied by -i (in classical mechanics). The six Euler-Poisson equations of 
motion for .Ti, x i  are derived with the help of their commutators with the Hamiltonian 
by the rule 

, 

d/dt=i[H, 1. (3) 
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In classical mechanics one should compute the commutators (3) using the basic 
algebra ( 2 )  only once, then one should suppose that the ordering of the generators is 
entirely arbitrary. 

Direct quantum mechanical calculation gives us the following Euler-Poisson 
equations 

i i  = - f { J 2 ,  x 3 )  + 2{J3, XZ} ( 4 )  J - 3  

J -  - 

J3 = bx2 

i - ~ { J Z ,  J 3 )  

2 - - ~ { J I ,  Jd -bx3  i 2 = H J i ,  X3}-2{J3, X I }  

i 3=-&Ji ,  xz)+&Jz, xi} 

where { , } denotes the anticommutator. Equations ( 4 )  go over into the classical 
ones if we do not follow the ordering of the generators in the right-hand sides of 
equations ( 4 ) .  

In the e ( 3 )  Lie algebra there are two Casimir operators 

( 5 )  1 = x. J.  = J.x .  2 r = x i x i  = 1 ,  1 1  I I  

which commute with any generator of E(3) and therefore with the Hamiltonian ( 1 ) .  
The trivial integral r2  = 1 in classical mechanics is usually called the integral of cosines. 
The integral 1 means conservation of the angular momentum about the direction of 
the field. 

In 1900 Chaplygin (1948)  found a remarkable property of the Hamiltonian ( 1 ) .  
Namely, its commutator with the function 

G c ~ = 2 J 3 ( J 2 - J : ) + 2 b ~ 3 J 1  (6) 

[H, Gcllcl = -2iblJ2, (7) 

l = O  ( 8 )  

computed by the rules of classical mechanics, can be written as 

where 1 is the projection of the angular momentum onto the field ( 5 ) .  Therefore, if 

the Gcl becomes the constant of motion. 

the classical commutators by quantum ones and G,! by G 
Property (7) can be easily established in quantum mechanics as well if one replaces 

( 9 )  

Since 1 is the Casimir operator, the ordering of 1 and J2 in the right-hand side of 
equation (7) is arbitrary. 

In the quantum case, property ( 7 )  means that the commutator of the two elements 
of the universal enveloping algebra of e(3) (G/2b1 and H, say) gives us the element 
J2 of the e ( 3 )  algebra. 

The four integrals of motion allow us to integrate the classical problem in quad- 
ratures. The results of Chaplygin (1948)  are as follows. In the new coordinates U, U 

G = 2 J 3 ( J 2 + $ -  J : )  + b { ~ 3 ,  J i } .  

U = J3 + ( J 2 ) 1 / 2 ,  U = J~ - (10) 

a(u - v ) = ( 4 b 2 u 2 -  U2(u))'/* ( 1  1 )  
z j ( ~  - U )  = ( 4 6 ' ~ ' -  U 2 ( ~ ) ) 1 / 2 .  

the equations of motion can be written as 

(12 )  
Here U(A) = A 3  - 2EA - g ,  and E and g are values of the integrals of motion H and 
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G,,. Chaplygin's method of deriving equations ( l l ) ,  (12) is very specific and cannot 
be applied in quantum mechanics. 

Kozlov (1980) obtained equations ( l l ) ,  (12) by means of the canonical 
transformation of the Hamiltonian ( l ) ,  which is first written down in terms of 5 3  and 
(J2)'" and their conjugate angles. This way is hardly convenient for the construction of 
quantum mechanical analogues of equations (1 l ) ,  (12) because the action-angle 
variables require a very careful approach even for the simplest problems in quantum 
mechanics. 

The equations of motion (11) and (12) are similar to those of the three-body periodic 
Toda lattice (Flashka and McLaughlin 1976) and coincide with the latter if one replaces 
4b2u2, 4b2u2 + 4 under the square root. Recently Gutzwiller (1981) considered the 
periodic Toda lattice in quantum mechanics. Common features can be noticed between 
his analysis and our following discussion. It is likely that a construction of quantum 
mechanical analogues of the equations (11) and (12) can shed some light on the 
solution of quantum periodic problems whose classical counterparts are integrable by 
means of the inverse scattering method. 

3. Separation of variables in quantum mechanics 

The common eigenfunctions of the operators H, G, r2 = 1 ,  1 = 0 in quantum mechanics 
form the new special basis of the irreducible representation of E(3). The operators 
H, G on the unit sphere S 2 :  r2 = xixi = 1 are realised as partial differential operators 
of the second and the third order respectively. There are no coordinates on this 
sphere which provide a separation of variables. Nevertheless separation of variables 
can be carried out by a transformation of a more general type. 

Let us consider a representation of the e ( 3 )  algebra in terms of two boson 
creation-annihilation operators. This representation is closely connected with the 
Majorana representation of the Lorentz group (Barut and RQczka 1977). It appears 
naturally in the quantisation of a rigid rotator by the Dirac procedure as a system 
subject to constraints (Gyorgyi and Kovesi-Domokos 1968). 

We introduce creation-annihilation operators of two types with the usual boson 
commutation relations 

[a,, a ;  1 = Sa@, [a,, apl = 0, a, p = 1 , 2  ( 1 3 )  

s = $(a,'a, + 1). ( 1 4 4  

Here ut; are the matrix elements of the ith Pauli matrix. It is convenient to arrange 
the ten quantities (14) in the 5 x 5 skew-symmetric matrix 

0 - 5 3  J 2  

J3  0 -J1 
J i  0 iP3 I , J = l ,  . . . ,  5 .  (15) 

-iP1 -iPz -iP3 0 S 
-iR1 -iR2 -iR3 -S  0 



Goryachev-Chaplygin top in quantum mechanics 1769 

As is known, GIj obey commutation relations of S 0 ( 3 , 2 )  

[ Grj, GKL] = i(SILGKJ + SIKGJL + SJKGLI + SJLGIK) (16) 

EIPQRSGPQGRS = 0 (17a) 

GISGSJ + GJSGSI = SIJ. (17b) 

and additional identities 

Following Gyorgyi and Kovesi-Domokos (1968) we introduce quantities 

xi = S-1/2RiS-1/2.  (18) 

It is easy to check that x i  and Ji defined by formulae (14a) and (18) form the Lie 
algebra of the E ( 3 )  group. Because of the equations (17), in the chosen representation 
the Casimir operator I is equal to zero and r2 = 1. It should be pointed out that in 
order to construct the representation of e ( 3 )  in terms of a, U +  it is sufficient to use 
equations (14a, c,  d )  and (18) only, without mentioning S 0 ( 3 , 2 ) .  

Now let us write down the Hamiltonian of the GC top in terms of Grj. Taking 
into account the definition (18) and the relation J 2  = S 2  -$, which follows from the 
property (17b), we get the Hamiltonian in the form 

H =5(S2-~+3J:)-bS-112R1S-1/2, (19) 
Now some manipulations need to be done. Let us pass to the energy representation 
and multiply equation (19) by S112 from the left and from the right. The result appears 
quite natural in new coordinates U ,  U, which are the counterparts of the classical 
coordinates (10) 

Using the definition R 1  =$(a:’ + U : )  - (a;’ + a : )  we find 

u 3 -  u 3  -2(E + 1 / 8 ) ( ~  - U)- b[ (a12  + u : ) - ( u : ~  + U : ) ] =  0. (21) 

This obviously admits a separation of variables. We get that the operator G = 

( 2 2 0 )  

=G“’(E, b ) = ~ ~ - 2 ( E + 1 / 8 ) v - b ( ~ : ~  + U : ) .  ( 2 2 6 )  

One can check this by direct computation, excluding E from equations ( 2 2 )  and 
returning to the original variables Ji, xi ,  that the operator G is just the same as in the 
definition (9). 

Equations (22) reduce the eigenvalue problem for H, G to determining the common 
spectra g“’,  g‘” of two one-dimensional Hermitian operators G“)  and G‘2’. The 
situation is similar to separation of variables, for example, in the two-Coulomb-centre 
problem in quantum mechanics (Komarov et a1 1976). Supposing E to be a free 
parameter, we first determine the eigenvalues gkl’(E, b )  and gY’(E, b )  depending on 
their quantum numbers and energy. Then from the equality gkl’(E, b )  = gr’(E, b )  we 
find the spectra gk,(b), Ekq(b). 

The equations ( 2 2 )  differ only by sign in the determination of the coordinates (20), 
therefore the eigenvectors of G‘” are the analytical continuation of those of G‘” on 
negative U = - U .  (A similar property exists, for example, for the radial and angular 

G“’(E, b )  = G”’(E, b )  is a constant in the energy representation, i.e. 

G = G”’(E, 6 )  = U - 2(E + 1 / 8 ) ~  - b (U;’ + U ;) 
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eigenfunctions of the hydrogen atom in prolate spheroidal coordinates (Komarov et 
a1 1976). 

The operators G'*' can be represented by the ordinary differential operators on a 
half-axis of the third (or the sixth) order. It is more convenient to find the eigenfunc- 
tions of Gt2' (G"') 

in the Fock representation 

In) = (a+)" / (n  ! ) * ' 2 1 ~ ) .  (24) 

Supposing lg'2') = Z2=o C,, In), we get that the matrix (n  IG'2'ln') is tridiagonal and 
the coefficients Cn obey the three-term recursion relations (TFRR) 

y n - 2 C n - 2 + P n C n  + y n C n + ~ = O  

yn = -b((n + l ) ( n  +2))'12 

/3,, = ( n  +l /2)3-2(E+1/8) (n+1/2) -g '2 '  

c-1= c-2 = 0 n = 0,1 ,  . . . . 
It is interesting to note that Pn = U ( n  + 1/2), where U ( A )  is the same cubic form 

as in the classical equations of motion (11) with the replacement E + E +:. The 
recursion (25) splits into two independent recursions for even and odd n, respectively. 
Their eigenvalues gr '  can be calculated with the help of infinite continuous fractions, 
which rapidly converge due to the cubic increase of Pn as n + 00. To analyse 
qualitatively the spectrum it is useful to apply the quasiclassical approach (Braun 
1978), which is based on the analogy between a ITRR and an ordinary differential 
operator of the second order. 

A common eigenvector of H and G is a product of eigenvectors of G"' and G'2'. 
Multiplying eigenvectors Igi") and /gf') of the same parity k and q, we get the 
solutions, which correspond to integral values of the total angular momentum in the 
limit b = 0. The opposite case makes no physical sense. In fact, we recall that the 
Casimir operator 1 is the component of the angular momentum along the field and 
1 = 0. It follows immediately that if 1 = 0, only integral values of the total angular 
momentum can occur in the limit b = 0. 

From the eigenvectors Igk')) and Igf') in the Fock representation we can construct 
the eigenfunctions of N and G on the two-dimensional sphere S 2 ,  using the well 
known correspondence (Barut and Rgczka 1977) 

Now let us discuss the quantum mechanical equations of motion for U and U. 
Direct computations with the help of the equations (14), (16) give us 

[H, U ]  = -26s 1 - 1 / 2 ( 4  -a;2)S-l/2 

[H, V I  = -tbS-'/2(a: -a:2)S-1/2. 

If one defines a derivation with respect to a new time 

d /d r  = 4iS1l2[H, ]S1'2 (28) 
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equations of motion for U and U become independent 

(d/dT)t{a;, a2}  = U, = 2ib(aZ2 - a : )  = i[G"', U ]  

(d/d~)-:{at, a l } = v ,  =2ib(a t2  - a : ) =  -i[G , U ] .  
'1) ( 2 9 )  

An important property can be readily seen from these equations. Namely, the 

These equations can be written down in the same form as the classical equations 
operators G'"' may be regarded as Hamiltonians with respect to the new time 7. 

( l l ) ,  ( 1 2 ) .  Using the identity 

( a  +' - a')' = ( a + 2  + U')* - 4(+{U+, a})' - 3 ,  (30 )  

from definition (22 )  and substituting identity (30) into 

( 3 1 )  

expressing the sum 
the equations (29 ) ,  we arrive at 

U ,  = 2[4b2(u2  + 3 / 4 )  - U 2 ( u ,  G'2')]1'2 

U ,  = -2 [4b2(v2  + 3 / 4 )  - U'(U, G'1))]1'2. 

Here U ( u ,  G'2') = u 3  -2 (E  + 1 / 8 ) u  - G'" is the operator cubic form. The formulae 
obtained are similar to the classical equations ( l l ) ,  ( 1 2 ) .  

3. Numerical results 

If the field is switched off, i.e. b = 0, the eigenstates of the GC top can be labelled by 
the total angular momentum L and its third component M. These quantum numbers 
are obviously connected with the quantum numbers of l g y ' ) ,  l ga ' )  

k CY=l 
N" = L + (- 1 )"M = { 

4 CY = 2 .  

The indices L and M play the same role as united atom labels in the two-Coulomb- 
centre problem (Komarov et a1 1976).  The eigenvectors Ig'"') with the fixed parity 
can be written as 

m 

Ig'"') = 1 Aj"'(-l)"sln'"'), n'"' = 2s + s"', (33 )  
s = o  

Here 8'"' is equal to 0 or 1 depending on the parity of the L + M  at CY = 1 or L - M  
at CY = 2 ,  i.e. 

S("' = $ ( I  - ( - I ) % ) ,  ( 3 4 )  
For the coefficients A?) one gets the TTRR 

As a consequence, some general properties of spectra g and E can be derived. 
The corresponding continuous fractions contain only products ysys+l. Hence the g ( b )  
and E ( b )  are even functions of b and do not depend on the sign of the field. 
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If k = q (i.e. M = 0), then at a fixed energy E the eigenvalues g"' and g'*' obviously 
differ only by sign g"' = -g"'. So far as the equation (22) implies g"' = g"', we get 
that g=O, if M = 0 .  Similar arguments with the replacement g(k2) t* gy' show that 
E is an even function of M, and g is an odd function of M. 

The spectra Ekq and gkq were calculated by the algorithm developed for the 
two-Coulomb-centre problem by Truskova (1976). The expansions of E @ ) ,  g ( b )  at 
small b were used as a good starting approximation. They are readily derived in the 
first order of the perturbation theory, which is equivalent to the one iteration in the 
corresponding continuous fraction. Let us denote 

( L  + M +  I ) ( L  + M  + 2) 
(2L+3)(2L+6M+5)  -(2L- 1)(2L+6M-3); 

( L  + M ) ( L  +M - 1) 
e(L, M )  = 

then we have 

E(L,  M, b)=[L(L+ 1)+3M2]/2-{b2/[2(2L+ l)]}[O(L, M ) + 8 ( L - M ) ] + 0 ( b 4 )  (37) 
g(L,M, b ) = 2 M [ ( L - 1 / 2 ) 2 - M 2 ] - [ b 2 / ( 2 L + 1 ) 1  

x [(L - M +  1 / 2 ) e ( ~ ,  M )  - ( L  + M +  1 / 2 ) e ( ~ ,  - ~ ) ] + o ( b ~ ) .  (38) 
Some numerical results for a few lowest eigenvalues E and g as a function of b 

are given in figures 1 ,2 .  The states are labelled by (L, M ) .  Exact crossings occur 
which are consequences of the separation of variables. For each pair of crossing 
curves both quantum numbers k and q are simultaneously different, i.e. k # k', q # 4'. 
If quantum numbers for one of the variables (k or q )  coincide, the corresponding 
eigenvalues cannot cross. 

There are two patterns of behaviour of E(b) .  In the first case the energy decreases 
monotonically while b increases. The GC top is at once aligned along the field. In 

E 

Figure 1. The eigenenergies of the GC top as a function of the field strength. Each curve 
is labelled by the quantum numbers (15, M )  of the free top. 
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1 1 
0 10 20 

b 

Figure 2. The eigenvalues of the separation constant of the GC top as a function of field 
strength. Each curve is labelled by the quantum numbers (L, M )  of the free top. 

the second case the energy has a maximum. The top at first untwists, increasing its 
energy, and only then draws in the field. To sum up, the energy dependence E ( b )  
for the GC top is similar to those of the usual dipole rotator in a uniform field (Shirley 
1963). 

Acknowledgments 

I am grateful to P A Braun, Yu N Demkov, L D Faddeev and M A Semenov-Tian- 
Shansky for their interest in this work and useful comments on the results. I thank 
E A Solov'ev for his advice on the numerical calculations. 

References 

Arnol'd V I 1976 Les mhhodes mathimatiques de la mkanique classique (Moscow: Nauka) 
Barut A 0 and Rgczka R 1977 Theory of Group Representations and Applications (Warsaw: PWN) 
Braun P A 1978 Theor. Math. Phys. 37 355 (in Russian) 
Chaplygin S A 1948 Collection of papers (Moscow: Gostechizdat) 1 118 (in Russian) 
Flashka H and McLaughlin D W 1976 Prog. Theor. Phys. 55 438 
Gorr  G V, Kudryashova L A and Stepanova L A 1978 Classical Problems of the Rigid Body Dynamics 

(Kiev: Naukova Dumka) (in Russian) 
Gutzwiller M G 1981 Ann. Phys., N Y  133 304 
Gyorgyi G and Kovesi-Domokos S 1968 Nuouo Cimento 58B 191 
Komarov I V 1981 Theor. Math. Phys. 47 67 (in Russian) 
- 1982 Theor. Math. Phys. 50 402 
Komarov I V, Ponomarev L I and Slavyanov 1976 Spheroidal and Coulomb Spheroidal Functions (Moscow: 

Kozlov V V 1980 Methods of Qualitative Analysis in Rigid Body Dynamics (Moscow: MGU) (in Russian) 
Leimanis E 1965 The general Problem of the Motion of Coupled Rigid Bodies about a Fixed Point (Berlin: 

Shirley J H 1963 J. Chem. Phys. 38 2896 
Truskova N F 1976 Report No P11-10207, Joint Institute for Nuclear Research (Dubna) 

Nauka) (in Russian) 

Springer) 


